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Abstract-The heat conduction in a hollow cylindrical electric resistor which carries an alternating current 
is analysed. The hole within the cylinder is either empty or filled with a dielectric solid. The non-uniform 
power generated per unit volume in the resistor by the Joule effect is evaluated, and the steady periodic 
Fourier equation is written in a dimensionless form both in the domain occupied by the resistor and in 
that occupied by the dielectric, if present. A boundary condition of the third kind is assigned at the external 
surface of the cylinder. The dimensionless temperature field is determined analytically as a function of 
position, time and a proper set of dimensionless parameters. 

INTRODUCTION 

Heat transfer in electric resistors is a subject widely 
treated in the literature. In many textbooks on heat 
conduction (see for example Kakag and Yener [l]), 
the evaluation of the temperature field in a solid cyl- 
inder crossed by a. stationary electric current repre- 
sents one of the simplest problems which involve the 
Fourier equation with a heat generation term. In that 
case, the solution can be easily determined because 
the temperature field is stationary and depends only 
on the radial coordinate, and because the heat gener- 
ation term is uniform. 

Nivoit et al. [2] have considered the dependence of 
the temperature field on the axial coordinate in the 
case of cylindrical electric wires with a very small 
section and crosse:d by a stationary current. These 
authors neglect the radial dependence of the tem- 
perature field because the section of the wire is small. 
They are concerned with the unicity of the stationary 
temperature distribution along the wire, especially in 
the case of radiatio n heat transfer through the external 
surface. 

Other authors [3-61 have analysed the heat con- 
duction in cylindrical electric resistors crossed by an 
alternating current. If the electric current is alter- 
nating, the current density has a non-uniform radial 
distribution within the resistor and, as the frequency 
increases, both the current density and the power gen- 
erated per unit volume concentrate near the external 
surface. This circumstance is known in the literature 
as the skin effect and is discussed in textbooks on 
electrodynamics, for example in Landau and Lifshitz 
[7], for an infinitely long solid cylindrical resistor. 
Therefore, when the current is alternating the heat 
generation term to be included in the Fourier equa- 

tion, which yields the temperature field within the 
resistor, is both non-uniform and time-dependent. 

Thorn and Simpson [3] consider a hollow cyl- 
indrical resistor which is crossed by an alternating 
current and is surrounded both internally and exter- 
nally by a vacuum, so that it radiates all the generated 
power. The time-averaged and dimensionless tem- 
perature difference between the internal and the exter- 
nal surface of the cylinder is evaluated for a fixed 
value of the outer radius and with a variable value of 
the inner radius. 

Both in Owens [4] and in Morgan and Barton [5] a 
resistor with the shape of a solid cylinder and crossed 
by an alternating current is considered. Owens per- 
forms an analytical evaluation of the temperature field 
in the resistor by neglecting the skin effect, i.e. by 
assuming that the power generated per unit volume 
is uniform but time-dependent. On the other hand, 
Morgan and Barton take into account the skin effect 
and deal with the transient heat conduction in the 
resistor by employing a simplified Fourier equation in 
which the heat generation term is replaced by its time- 
average. These authors evaluate the time-evolution of 
the dimensionless surface temperature of the resistor 
immediately after the current has been switched on 
or off. Transient temperature distributions have also 
been studied by Sahin et al. [S], with reference to a 
slab of material, with an insulated boundary, that 
carries an alternating current during a direct resistance 
or an induction heating. These authors perform their 
analysis neglecting the time dependence of the power 
generated per unit volume by the Joule effect. 

Recently, Barletta and Zanchini [6] have deter- 
mined analytically the steady periodic temperature 
field in a solid cylindrical resistor, crossed by an alter- 
nating current with skin effect. The resistor is sup- 
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NOMENCLATURE 

a internal radius of the conductor [m] T temperature [K] 
A integration constant introduced in T time-averaged temperature [K] 

equation (20) Tf fluid temperature outside the 
b external radius of the conductor [m] boundary layer [K] 
B integration constant introduced in u, a dimensionless functions of s, s2, A and 

equation (20) AC defined in equations (85) and (86) 
Bi Biot number hbjl, W Wronskian 
c speed of light in empty space [m s-‘1 X real variable 
Cl,...,C4 integration constants employed in Y?’ Bessel function of second kind and 

equations (50) and (52) order II 
c constant defined by equation (90) Z cylindrical axial coordinate [m] 

CP, specific heat at constant pressure of the i? unit vector parallel to the axis of the 
electric conductor [J kg-’ K-‘1 cylinder. 

CP* specific heat at constant pressure of the 
dielectric solid [J kg-’ K-‘1 Greek symbols 

E electric field [V m-‘1 l- dimensionless parameter r = &/A, 

&I modulus of E, [V m-‘1 A dimensionless parameter A = a/b 

& component of E,, in direction z [v m-‘1 a0 electric permittivity of empty space 

Eo space-dependent part of E, defined by [F m-‘1 
E = Eoemi”’ [V m-‘1 e cylindrical angular coordinate, rad 

f dimensionless function of S, R and A 9 dimensionless temperature defined in 
defined in equation (32) equation (41) 

9 dimensionless function of s, Q and A 9,, 9,, Q2 dimensionless real functions 
defined in equation (38) defined in equations (44) and (60) 

h convection coefficient [W m-* K-‘1 & thermal conductivity of the electric 
H magnetic field [A m-‘1 conductor [w m-’ K-l] 
Z&0 component of Ho in direction 0 s 

*d thermal conductivity of the dielectric 
[A mm’] solid [w m-’ K-‘1 

Ho space-dependent part of H, defined by A, dimensionless parameter 
H = Ho ePwr [A m-‘1 AC = (2cop,cpCb2)“2/15;‘2 

i imaginary unit i = J-1 Ad dimensionless parameter 
Z eff effective electric current (defined as 

//III /$, where Z is the electric current) 
Ad = (2copdc,db2)“2/1:‘2 

p0 magnetic permeability of empty space 

[Al [V s A-’ m-‘1 
J electric current density [A m-‘1 PC mass density of the electric conductor 

J, Bessel function of first kind and order [kg mm31 
II 

kl, k, integration constants employed in 
equation (83) 

e power generated per unit length by 
Joule effect [w m-‘1 

qg power generated per unit volume by 
Joule effect [W m-‘1 

49 time-average of qg [w m-‘1 
r cylindrical radial coordinate [m] 

R0 electric resistance per unit length for 
stationary current [V A-’ m-‘1 

s dimensionless radial coordinate 
s = r/b 

s’, s” integration variables 
t time [s] 

Pd mass density of the dielectric solid 

[kg m-7 
0 electric conductivity [A V-’ m-‘1 
7 dimensionless time 7 = wt 

cp dimensionless function of R and A 
defined in equation (94) 

Ic/ dimensionless complex-valued 
function, * = 9, + is2 
angular frequency, rad s-’ 

; dimensionless parameter 
Q=bJ;L,wa. 

Symbols 
= equal by definition 
II II modulus of a complex number. 

posed to transfer the power generated by the Joule annular section and crossed by an alternating electric 
effect to a surrounding fluid, through convection. current. The hole within the cylinder is considered 

The aim of this paper is to analyse the steady per- either as empty or as filled with a dielectric solid. The 
iodic heat conduction in a cylindrical resistor with paper is organized as follows. First, the distribution 
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of the power generated per unit volume within the 
resistor is evaluated. Then, the Fourier equation is 
written in a dimensionless form and the temperature 
field is determined analytically both in the domain 
occupied by the resistor and in the domain occupied 
by the dielectric as a function of position, time and 
proper dimensionless parameters. Moreover, the tem- 
perature field in the resistor when the hole within 
the cylinder is empty is obtained as a limiting case. 
Numerical values of the time-averaged and dimen- 
sionless temperature field and of the amplitude and 
phase of the dimensionless temperature oscillations 
are provided. 

THE HEAT GENERATION 

In this section, the power per unit volume generated 
by the Joule effect within an infinitely long cylindrical 
conductor with annular section carrying an alter- 
nating electric current is determined. 

Let us consider an electric conductor in the form of 
a hollow cylinder, with infinite length, internal radius 
a and external radius b. The electric conductor has 
thermal conductivity I, and electric conductivity 6. A 
homogeneous dielectric solid with thermal con- 
ductivity 1, occupies the region r < a. The magnetic 
permeability of the conductor and that of the dielectric 
solid will be assumed to be equal to pO, and the physi- 
cal properties of both the electric conductor and the 
dielectric solid will be treated as constants. A parallel 
electric field E with direction z and a magnetic field 
H, which depend only on r and t, are present inside the 
conductor. These wields undergo periodic variations in 
time, with an angular frequency w. The macroscopic 
charge density distribution is zero everywhere. It will 
be assumed that the angular frequency w of the electric 
field oscillations satisfies the conditions wb << c and 
WEE << a, which are necessary for the validity of the 
quasi-stationary approximation of the electro- 
magnetic field equations [7]. These conditions are sat- 
isfied even at very high frequencies. In fact, for an 
annular conductor with external radius b = 1 cm and 
electric conductivity a N 10’ A V-’ m-‘, the condition 
wb << c holds if w << 10” rad s-‘, while the condition 
WEE << a holds if w << 10” rad SC’. In the quasi-station- 
ary approximation, for u < r < b, Maxwell’s equa- 
tions can be written as [7] 

V*E=O (I) 

V-H=0 (2) 

VxE= -peg 

VxH= J. (4) 

Ohm’s law is supposed to hold, i.e. 

J = aE. (5) 

For r < a, Maxwell’s equations can be written as 

V-E=0 (6) 

V-H=0 (7) 

VxE= -p,g 

VxH=O. (9) 

For every value of r, the electric field E and the mag- 
netic field H can be expressed as 

E(r, t) = E,(r) eelor, H(r, t) = H,(r) ee’“‘. 

(10) 

On account of equations (5) and (lo), equations (l)- 
(4) yield 

V-E, = 0 (11) 

V-H, =0 (12) 

V x E. = ipooH (13) 

VxH, = aE,. (14) 

By applying the curl operator to both sides of equation 
(13) and by employing equation (14), one obtains 

Vx(VxE,) =ipowaEo. (15) 

As a consequence of the vector identity [9] 

Vx(VxE,) = V(V*E,)-V’E, (16) 

equation (15) can be rewritten as 

V(V * E,) - V’E, = ip,waE,. (17) 

On account of equation (1 l), equation (17) yields 

VZEo +ipowaEo = 0. (18) 

By projecting equation (18) along z, one obtains 

d2Eo 
- + : T +i,u,waE, = 0. 
dr2 

(19) 

The general solution of equation (19) is [lo] 

E. = AJo(rfi)+BYo(r~). (20) 

A constraint on the two integration constants A and 
B can be obtained as follows. For r < a, equations 
(6)-( 10) yield 

V*E, = 0 (21) 

V-H, = 0 (22) 

V x E. = ip,wH, (23) 

VxH, = 0. (24) 

By projecting equation (24) along z, one obtains [lo] 

1; (rHoB) = 0, for r < a. 

On account of equation (25), since Ho, cannot be 
singular at r = 0, one has Ho0 = 0 for r < a. There- 
fore, the projection of equation (23) along the direc- 
tion 8 yields 
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d&z - &OH,,, = 0, forr < a. 
On account of equation (34), the time average of qg 

dr (26) can be evaluated as 

Moreover, the projection of equation (13) along the w n/w 

direction e yields 4g=, 
s 0 

qgdt =;~211.f(~,~,A)lli. (35) 

dEo 
dr 

- ipOoHoB, fora < r -c b. (27) 

Since J is not singular at r = a, i.e. no surface charge 
density distribution is present at r = a, then H,,, must 
be continuous at r = a [7]. As a consequence of equa- 
tions (26)-(27), also dE,,/dr is continuous at r = a and 
equals zero. Therefore, on account of the identities [9] 

d Jo (4 -= -J,(x) 
dx 

d Yo (4 ~ = - Y,(x) 
dx 

and of equation (20) one obtains 

02$ = - &G[AJ, (a&izr, 
r-=(1 

+BY,(a&SG)l. (30) 

On account of equation (30), equation (20) can be 
rewritten as 

E. = A J,,(rG) 

JI cqGG3 - 
y, (G/G=) 

Yo(r&GG 
I 

(31) 

If one defines the dimensionless parameters 
Cl=bc ,,WCT and A = a/b, the dimensionless coor- 
dinate s = r/b and the dimensionless function 

(32) 

equation (3 1) can be rewritten as 

E,, = Af(s, R, A). (33) 

The integration constant A can be evaluated by the 
condition that the time-averaged power generated per 
unit length within the annulus has a prescribed value 
Q. The power generated per unit volume within the 
annulus can be evaluated as qg = J * E [ 111. Therefore, 
on account of equations (5), (10) and (33), qg is given 
by 

qg = u[Re (E. e-‘“‘)]’ 

= z [ 11 E. II* + Re (Et) cos (2~) + Im (Ei) sin (2wt)] 

= $ A2 {Il.& Cl, A) II2 + Re [f(~, R, A)‘] cos (2wt) 

+ Im [f(s, R, A)‘] sin (2wt)}. (34) 

Therefore, the time-averaged power generated per 
unit length within the annulus is given by 

h 

s- s 

1 
Q = qg 2nr dr = mb*A* Ilf(s’, fi, A) 1V.f ds’ 

il A 

(36) 

so that A2 can be expressed as 

,4* = Q 
1 (37) 

onb’ 
s 

II ./Is’, a, A) IVs’ ds’ 
A 

Let us define the dimensionless function 

&GA) = f 6, n, 4’ 

s 

, (38) 
llf (s’, !A 4 II *s’ ds’ 

A 

On account of equations (37) and (38), equation (34) 
can be rewritten as 

Q qg = 3 {II As, Q 4 II + Re [ds, Q 41~0s (2~4 

+ Im [g(s, R, A)] sin (20.~)). (39) 

The expression of qg for a solid cylinder can be easily 
obtained from equations (38) and (39) in the limit 
A -+ 0. In this limit, on account of equation (32), 
f (s, R, A) + J,, (,,kh), in agreement with the result 
obtained in [6]. 

DIMENSIONLESS FORM OF THE FOURIER 

EQUATION FOR THE DIELECTRIC SOLID 

In this section, the Fourier equation for the region 
r < a is written in a dimensionless form. Then, under 
the hypothesis that the heat conduction is steady per- 
iodic, the dimensionless Fourier equation is trans- 
formed into a system of three ordinary differential 
equations and the general solutions of these equations 
are determined analytically. 

The Fourier equation for the dielectric solid can be 
written as 

If a dimensionless temperature 

s+-T,) 
is defined and if the dimensionless radius s and the 
dimensionless time z = it are employed, then equa- 
tion (40) can be rewritten as 
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(42) 

By employing the dimensionless parameter Ad = 
(2copdc,db2)1/2/~~~2~ equation (42) yields 

(43) 

After a time sufficiently long for transient terms to 
be neglected, the temperature field becomes steady 
periodic, so that 

S(S, r) = 90(~) + 9, (s) cos (22) + Q2@) sin (22). (44) 

By substituting equation (44) into equation (43) one 
obtains 

The integration of both sides of equation (45) with 
respect to z in the interval [O,n] yields 

“t$+;!+ (46) 

If one multiplies both sides of equation (45) by 
cos (22), the integration with respect to r in the interval 
[OJC] yields 

If one multiplies both sides of equation (45) by 
sin (22), the integration with respect to z in the interval 
[OJ] yields 

(48) 

By employing the complex valued function 
rj = 9, + i9, equations (47) and (48) collapse into one 
differential equation, namely 

Note that So represents the time-average of 9, while 
the modulus and the argument of Ic, represent, respec- 
tively, the amplitude and the phase of the dimen- 
sionless temperature oscillations. 

The general solution of equation (46) is 

9,, = c, ln(r)+cz. (50) 

Since 9, cannot be singular for s = 0, the integration 
constant cI must be zero and equation (50) yields 

90 = Cl. (51) 

The general solution of equation (49) is 

I) = c~Jo(~A~s)+c~Yo(~A~s). (52) 

Since $ cannot be singular, while Y, (d&s) is singu- 
lar for s = 0, then cq must be zero and equation (52) 
yields 

* = cJ&,&). (53) 

DIMENSIONLESS FORM OF THE FOURIER 
EQUATION FOR THE CONDUCTOR 

In this section, the Fourier equation for the region 
a < r < b is written in a dimensionless form. Then, 
under the hypothesis that the heat conduction is 
steady periodic, the dimensionless Fourier equation is 
transformed into a system of two ordinary differential 
equations. 

The Fourier equation for the annular conductor 
can be written as 

Let convection be present at the surface r = b with an 
external fluid which has temperature ?“r outside the 
boundary layer. Then, the boundary condition on 
function Tat r = b can be expressed as 

-n,?T 
ar r_b 

= h[ T(b, t) - Tf] (55) 

and Q is related to Tf by 

Q = 2nbh[T(b) - TJ. (56) 

The convection coefficient h is supposed to be inde- 
pendent of temperature ; this hypothesis is verified 
with an excellent approximation in the case of forced 
convection. By employing the dimensionless tem- 
perature 9, the dimensionless radius s and the dimen- 
sionless time r, equation (54) can be rewritten as 

a29 i as 271b2 wCcpCb2 as 
-$+;z+--49= 1 e y--Z' (57) 

As a consequence of equation (39) and of the defi- 
nition of the dimensionless parameter A, = 
(2op,c, c b’) “2/;l;‘2, equation (57) yields 

2 + f g + II As, Q, 4 II + Re 1 ds, Q 41~0s (27) 

+Im[g(s,C&A)]sin(27) =$g. (58) 

By employing the dimensionless radius S, the dimen- 
sionless time z, the dimensionless temperature 9 and 
the Biot number Bi = hb/&, equation (55) can be 
written as 

as 
as& +Bi9(1,7) = 0. (59) 

After a time sufficiently long for transient terms to 
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be neglected, the temperature field becomes steady 
periodic, so that 

S(s, 2) = So(s) f9, (s) cos (22) +92(~) sin (22). 

(60) 

By substituting equation (60) in equation (58), one 
obtains 

+Im[g(s,QA)]+Az9, sin(2r) =O. (61) 
1 

The integration of both sides of equation (61) with 
respect to z in the interval [0,x] yields 

d29, 
;,?+;d$= -Ilg(s,fi,A)II. (62) 

If one multiplies both sides of equation (61) by 
cos (22), the integration with respect to z in the interval 
[O,n] yields 

d’9, 
z+t$-h:9, = -Re[g(s,R,A)]. (63) 

If one multiplies both sides of equation (61) by 
sin (22), the integration with respect to z in the interval 
[OJ] yields 

d29, 
~+iz+A:& = -Im[g(s,Q,A)]. (64) 

By employing the complex valued quantity $ = 
9, +i9, equations (63) and (64) collapse into one 
differential equation, namely 

d2ti 1 d$ 
~+;~+lA:$= -g(s,R,A). (65) 

By substituting equation (60) in equation (59) and 
by employing the same method as that used to split 
equation (61) into equations (62) and (65) one 
obtains 

d% 
ds 

+&go(l) = 0 
s= I 

W 
ds 

+sill/(l) = 0. 
s=l 

The boundary conditions (66) and (67) are not 
sufficient to determine uniquely 9,, and $ in the region 
A < s < 1; another set of two boundary conditions, 
one for &, and one for $, is necessary and can be 
determined as follows. On account of equations (51) 
and (53) and of identity (28), functions 9,, and ti in the 
region A < s < 1 must fulfil the following matching 
conditions 

(76) 

On account of equation (38), equation (75) yields 
d&,/d& = , = - 1. Therefore, as a consequence of 
equation (66), one obtains So(l) = l/Bi and equation 
(76) can be rewritten as 

11 s” s [s ,s” A 
s’I( g(s’, Q A) 11 ds’ 1 ds”. 

%(A) = ~2 (68) (77) 

-1 d9, 
’ ds S=‘,= 

0 

$(A) = &(,/&A) 

(69) 

(70) 

-1 !!i 
’ ds s=A 

= &$A& (GAdA). (71) 

Equations (68) and (70) are a consequence of the 
continuity of the temperature field, while equations 
(69) and (71) are due to the continuity of the heat flux 
vector. By employing the dimensionless parameter 
r = 1,/L,, equations (70) and (71) yield 

1 dl/l ~- 1 
$(A) ds s=A 

= -$IAd:‘;$+A. (72) 
0 ’ d 

Equations (69) and (72) represent the missing bound- 
ary conditions for 9, and I/I necessary to determine 
uniquely these functions in the region A < s < 1. 

EVALUATION OF THE DIMENSIONLESS 
TEMPERATURE FIELD 

In this section, the temperature field in the whole 
region Y < b is determined. First, the general solutions 
of equations (62) and (65) are evaluated. Then, the 
boundary conditions (66) and (67) together with the 
matching conditions (69) and (72) are employed to 
determine the temperature field. 

The general solution of equation (62) is easily 
obtained as follows. Equation (62) can be rewritten 
as 

(73) 

A first integration of equation (73) yields 

d% sds= - 
s 

‘s.llg(s’,R,A)~/ds’+A~ _ . (74) 
& S-A 

On account of equation (69), equation (74) can be 
simplified as follows : 

s% = - 
s 

ss’llg(s’,QA)II ds’. (75) 
A 

The integration of equation (75) leads to 

So(s) = 9,(l) + 
’ 1 5” s [5 ,s” A 

s’]] g(s’, R, A) (/ ds’ 1 ds”. 
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Table 1. Values of C&(s) - l/B for 0 < 0 < 20, A = 0.4, A = 0.7 

A = 0.4 A = 0.7 

n S = 0.4 S = 0.6 .I = 0.8 s = 0.7 s = 0.8 S = 0.9 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.3255 0.2837 0.1718 0.1573 0.1385 0.0850 
0.3248 0.2831 0.1716 0.1573 0.1385 0.0850 
0.3153 0.2754 0.1683 0.1569 0.1382 0.0849 
0.2818 0.2483 0.1566 0.1553 0.1369 0.0843 
0.2270 0.2038 0.1373 0.1512 0.1336 0.0829 
0.1750 0.1614 0.1185 0.1436 0.1272 0.0801 
0.1384 0.1310 0.1042 0.1322 0.1178 0.0759 
0.1145 ‘0.1107 0.0935 0.1182 0.1063 0.0708 
0.0982 0.0962 0.0848 0.1037 0.0944 0.0655 
0.0862 0.0851 0.0774 0.0905 0.0834 0.0605 
0.0768 0.0762 0.0709 0.0794 0.0742 0.0563 
0.0692 0.0689 0.0653 0.0705 0.0667 0.0527 
0.0630 0.0629 0.0603 0.0635 0.0607 0.0497 
0.0578 0.0577 0.0559 0.0578 0.0559 0.0471 
0.0534 0.0534 0.0521 0.0533 0.0519 0.0448 
0.0496 0.0496 0.0487 0.0495 0.0485 0.0427 
0.0464 0.0464 0.0457 0.0462 0.0455 0.0408 
0.0435 0.0435 0.043 1 0.0434 0.0429 0.0390 
0.0410 0.0410 0.0407 0.0409 0.0406 0.0374 
0.0387 0.0387 0.0385 0.0387 0.0385 0.0358 
0.0367 0.0367 0.0366 0.0367 0.0365 0.0343 

In the limit A+ 0, equation (77) agrees with the 
expression of the time-averaged and dimensionless 
temperature field obtained for a solid cylinder in [6]. 
When Q + 0, on account of equations (32) and (38), 
equation (77) yields 

1 
&J(S) ==-+ 

2A21ns+l-s2 
Bi 2(1-A2) ’ (78) 

By employing equati,ons (32) and (38) and by eva- 
luating numerically the integrals in equation (77) one 
obtains 9,,(s). Values of 9,-,(s) - l/Bi for 0 < R < 20, 
A = 0.4 and A = 0.7 are reported in Table 1. Note 
that, on account of equations (51) and (68), S,,(s) is 
uniform in the re,gion 0 < s < A and has the value 
9,,(A), which can be determined by Table 1. Moreover, 
this table shows that, as R increases, S,(s) tends to 
become uniformly distributed in the whole cylinder. 

s 
04 0.5 0.6 0.7 0.8 0.9 1 

Fig. 1. Plots of &,(:;) - l/Bi for A = 0.4 and three values 
of R. 

In fact, as a consequence of equations (32), (38) and 
(77) when R -+ cc function So(s) tends to l/Bi for 
every s < 1. In Fig. 1, the time-averaged and dimen- 
sionless temperature go(s) is plotted as a function of s 
in the interval A < s < 1, for A = 0.4. Three curves 
are reported, for CJ = 0, R = 5 and Cl = 10. 

Let us now solve equation (65) with the boundary 
conditions (67) and (72). The homogeneous differ- 
ential equation associated with equation (65) is 

d2$ 1 d$ 
p+;x+lA:$ =o. (79) 

Two linearly independent solutions of equation (79) 
are J,(,,/&) and Yo(,,/&s) [lo]. The Wronskian 
associated with this pair of solutions is 

w(s) = Jo (&s) $ Y,(,/A,s) 

- Y,($AJ) $J,,(dA.s). (80) 

On account of the identity [9] 

equation (80) yields 

By employing the method of variation of parameters 
presented in [12], the general solution of equation (65) 
can be written as 
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s 
- yo (Jb) s Jo (&s’) 

w(s’) 
g(s’, R, A) ds’ 

A 

r 
+ Jo ($A& 

s 

Y, ($Acs’) 

w(s’) 
g(s’, R, A) ds’ (83) 

& 

i.e. on account of equation (82) 

$(r) = k,J,(~A,s)+k,Y,(~A,s) 

-J,, (dA,s’) Y, ($A,s)]g(s’, s1, A)s’ ds’. (84) 

Let us define functions u&Q, A,A,) and 
z)(s, a, A, A,) as follows : 

-Jo ($A,$) Y, ($A,s)]g(s’, Iz, A)s’ ds’ (85) 

u(s, R, A, A,) = 
s 

’ [J, ($Acs) Y,($A&) 
d. 

-&($Acs’) Yr (dAcs)]g(s’, R, A)s’ds’. (86) 

On account of equation (85), equation (84) can be 
rewritten as 

I&) = k, Jo ($A& + k2 Y, ($A& + ; U(S, R, A, A,). 

(87) 

By substituting equation (87) into equations (67) and 
(72), and by employing equations (28), (29), (85) and 
(86), one can determine the integration constants k, 
and kl, namely 

k, =~[~aU(i,n,A,~,)-siu(i,n,~,i\=)l 

x {Wd,/& - CYo (&)I -&Lb (&c) 

-W(,hc>l>- (88) 

k2 = -Ck, (89) 

where the dimensionless constant C is given by 

C = [FA,J, ($A,A& ($AcA) -A, .I, (dAcA) 

x Jo (&WI [r&J, (&J> Yo (,hW 

-A, Y1 (dAcA)J,, (dAdA)] - I. (90) 

Values of the modulus and of the argument of Bi $, 
determined by equations (87), (53) and (70), are 

reported in Tables 2,3 and 4 at s = 1, s = A and s = 0 
respectively. In these tables a tungsten conductor with 
I, = 163.0 W m-’ K-‘, pc = 1.925 x lo4 kg rnm3, 

CP, = 135.0Jkg-‘Km’ and (r = 1.370x 10’ A V-’ 
m-’ is considered. The region 0 < r < a is occupied 
either by a Pyrex glass with I, = 1.45 W m-’ K-’ and 
i,/(p,c,) = 0.740 x 10e6 m2 s-‘, or by Teflon with 
1, = 0.260 W m-’ K-’ and &l(~,c,~) = 
0.340 x 10m6 m* s-’ With these choices, A$ is equal 
to 43.03, F is equal either to 0.00890 for Pyrex or to 
0.00159 for Teflon, A& is equal either to 396.2 for 
Pyrex or to 584.4 for Teflon. The value of A is chosen 
as 0.4, while Bi can assume the values 10p3, lo-’ or 
10-l. 

If in the region r < a the dielectric solid is replaced 
by empty space, the surface r = a becomes adiabatic. 
In this case, equations (85)-(90) yield the expression 
for $ provided that, in equation (90), the limit F + 0 
is performed. In fact, provided that Ad < co, when 
I + 0 equation (72) yields d$/ds],y= ., = 0, so that, 
on account of equations (60) and (69) one obtains 
&!j/as],~ = A = 0. In the limit F + 0, equation (90) yields 

c = JI (4 A& 

Y, (4 A& 
(91) 

so that, on account of equations (32) and (89), equa- 
tion (87) can be rewritten as 

$6) = k,f(s, A,, A) + ;u(s> Q A, A,>. (92) 

Values of the modulus and of the phase of Bi $, evalu- 
ated by equation (92) for the tungsten conductor 
described above, are reported in Table 5 for s = 1 and 
in Table 6 for s = A. The dimensionless parameter A 
can assume the values 0.4 and 0.7, while Bican assume 
the values 10e3, lo-* or 10-i. 

DISCUSSION OF THE RESULTS 

In the previous sections, an analytical solution of 
the heat conduction problem has been provided for 
an infinitely long solid cylinder with radius b and such 
that the region 0 < r < a is occupied by a dielectric 
solid, while the region a < r < b is occupied by an 
electric conductor crossed by an alternating current. 
The heat generation due to the Joule effect is present 
only in the region a < r < b. The analytical solution 
of the Fourier equation has been obtained in a dimen- 
sionless form in a steady periodic regime, in the pres- 
ence of convective heat transfer with an external fluid. 
The dimensionless temperature field depends on six 
dimensionless parameters : Bi, 0, A, A,, I and Ad. The 
time-averaged and dimensionless temperature dis- 
tribution 9, depends on Bi and R, while 9,-- l/Bi 
depends only on R. Moreover, in the region 0 < r < a, 
9,, is uniform. The values of 9,, - 1 /Bi reported in Table 
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Table 2. Values of the modulus and of the argument (in italic) of Bi$ at s = 1 for a tungsten 
conductor with A = 0.4 and the region 0 < s C 0.4 occupied either by a Pyrex glass or by Teflon 

1- = 0.00890 ; A&2 = 396.2 I- = 0.00159; A& = 584.4 
(Pyrex glass) (Teflon) 

n Bi = 10m3 Bi = lo-’ Bi = 10-l Bi = 10-J Bi = 10-2 Bi = lo-’ 

0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.20 

0.40 

0.60 

1 .oooo 
0.0000 
0.0114 
I S236 
0.0030 
1.5174 
0.0014 
1.5299 
0.0008 
1.5364 
0.0005 
1 S402 
0.0004 
I S428 
0.0003 
I S448 
0.0002 
1.5465 
0.0002 
1 S481 
0.0001 
1 s495 
0.0000 

0.0000 
- 

0.0000 

1 .oooo 
0.0000 
0.1126 
1.4221 
0.0301 
I .4903 
0.0137 
1.5175 
0.0078 
1 S292 
0.0050 
1.5355 
0.0035 
I s394 
0.0026 
1 S421 
0.0020 
1 s443 
0.0016 
1.5462 
0.0013 
1.5478 
0.0003 
1 S428 
0.0001 
1.4701 
0.0000 

- 

1 .oooo 
0.0000 
0.7322 
0.7137 
0.2800 
I .2360 
0.1330 
1.3968 
0.0764 
1.4590 
0.0495 
1.4890 
0.0346 
1.5056 
0.0256 
1.5158 
0.0197 
1 S226 
0.0156 
1.5276 
0.0127 
1.5313 
0.0032 
I S348 
0.0008 
1.4662 
0.0002 
1.3124 

1 .oooo 
0.0000 
0.0124 
1.5377 
0.0032 
1.5525 
0.0014 
I s575 
0.0008 
1 S596 
0.0005 
1 s-604 
0.0004 
1.5607 
0.0003 
I .5606 
0.0002 
1.5603 
0.0002 
1 s599 
0.0001 
1.5593 
0.0000 

0.0000 

0.0000 

1 .oooo 
0.0000 
0.1225 
1.4273 
0.0315 
I .5241 
0.0141 
1.5448 
0.0080 
I S523 
0.0051 
1.5557 
0.0036 
1.5572 
0.0026 
1.5579 
0.0020 
I .5581 
0.0016 
1.5580 
0.0013 
I.5576 
0.0003 
1 S420 
0.0001 
1.4701 
0.0000 

1 .oooo 
0.0000 
0.7646 
0.6796 
0.2952 
1.2555 
0.1373 
1.4204 
0.0780 
1.4810 
0.0502 
1.5088 
0.0349 
I .5234 
0.0257 
I.5317 
0.0197 
1.5366 
0.0156 
I s395 
0.0127 
1.5412 
0.0032 
1.5340 
0.0008 
I .4663 
0.0002 
1.3124 

1 and those plotted in Fig. 1 show how 9,, tends to 
become uniform throughout the cylinder and equal to 
l/Bi as Q tends to infinity. 

The amplitude and the phase of the dimensionless 
temperature oscillations have been reported in Tables 
2, 3 and 4, for prescribed values of A and of AC/C2 
respectively for r =: b, r = a and r = 0. Note that AC/Q 
depends only on the choice of the electric conductor, 
while Ad/0 and I depend on the choice of both the 
dielectric solid and the electric conductor. Tables 2 
and 3 show that both at r = b and at r = a the ampli- 
tude of the dimensionless temperature oscillations 
tends to decrease as R increases and becomes neg- 
ligible for Q 2 0.6. Moreover, Table 4 shows that, as 
C2 increases, the dimensionless temperature oscil- 
lations in the dielectric at r = 0 are strongly damped 
both in the case of Pyrex glass and in the case of 
Teflon, and have a negligible amplitude even at 
R = 0.06. For the tungsten conductor considered in 
Tables 2-4, if b ??= 1 cm, the value Cl = 0.06 cor- 
responds to an electric current frequency of 0.333 Hz, 
while the value CJ ??= 0.6 corresponds to a frequency of 
33.3 Hz. For the values of A&I and I that correspond 
to Teflon, the amplitude of the dimensionless tem- 
perature oscillations at r = a is slightly greater than 
at r = b. The pha,se difference of the dimensionless 

temperature oscillations between the surfaces r = b 
and r = a is very small if compared with that between 
the axis of the cylinder and the surface r = a, and is 
smaller for Teflon than for Pyrex. 

The amplitude and the phase of the dimensionless 
temperature oscillations when the surface r = a is 
adiabatic are reported in Table 5 for r = b and in 
Table 6 for r = a. In these tables, the value of AC/C2 is 
fixed and corresponds to a tungsten conductor. The 
results obtained in Table 5 for A = 0.4 are very similar 
to those obtained in Table 2 for Teflon ; the same 
analogy holds between Tables 6 and 3. In fact, the 
value of I for Teflon is so small that the effect of this 
dielectric on the dimensionless temperature dis- 
tribution within the conductor is similar to that of 
vacuum. An analysis of Tables 5 and 6 shows that the 
values of the amplitude and of the phase at r = b and 
at r = a are very similar. In particular, the amplitude 
at r = a is slightly greater than the amplitude at r = b. 

Tables 2-6 show that the decrease in amplitude of 
the dimensionless temperature oscillations is strongly 
influenced by Bi: the smaller is Bi the smaller is the 
value of R above which the amplitude becomes neg- 
ligible. Moreover, Tables 2-6 point out that, when 
Q -+ 0, the amplitude of the dimensionless tem- 
perature oscillations tends to coincide with the time- 
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Table 3. Values of the modulus and of the argument (in italic) of Sit) at s = A for a tungsten 
conductor with A = 0.4 and the region 0 < s < 0.4 occupied either by a Pyrex glass or by Teflon 

I- = 0.00890 ; &/Cl = 396.2 I- = 0.00159 ; A& = 584.4 
(Pyrex glass) (Teflon) 

n Bi = 1om3 Bi = lo-* Bi = 10-l Bi = 10m3 Bi = 1O-2 Bi = 10-l 

0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.20 

0.40 

0.60 

1.0003 
0.0000 
0.0114 
1.5294 
0.0030 
1.5294 
0.0014 
1.5468 
0.0008 
1.5578 
0.0005 
I .5654 
0.0003 
1.5706 
0.0002 
1.5739 
0.0002 
1.5757 
0.0002 
1.5762 
0.0001 
1.5756 
0.0000 

0.0000 

0.0000 

1.0033 
0.0000 
0.1128 
1.4280 
0.0299 
1.5024 
0.0136 
1.5344 
0.0077 
1.5509 
0.0049 
1.5610 
0.0034 
1.5677 
0.0025 
1.5720 
0.0019 
1.5744 
0.0015 
1.5753 
0.0012 
1.5750 
0.0003 
1.5573 
0.0001 
1.5126 
0.0000 

1.0326 
0.0000 
0.7546 
0.7197 
0.2864 
1.2487 
0.1352 
1.4151 
0.0772 
1.4832 
0.0496 
1.5183 
0.0344 
1.5393 
0.0252 
I .5526 
0.0192 
1.5613 
0.0151 
1.5667 
0.0122 
1.5697 
0.0030 
I .5580 
0.0007 
1.5126 
0.0003 
1.4589 

1.0003 
0.0000 
0.0124 
1.5394 
0.0032 
1.5555 
0.0014 
1.5620 
0.0008 
1.5653 
0.0005 
1.5672 
0.0004 
1.5682 
0.0003 
1.5686 
0.0002 
1.5685 
0.0002 
1.5679 
0.0001 
1.5670 
0.0000 

0.0000 

0.0000 

I .0033 
0.0000 
0.1228 
1.4291 
0.0316 
1.5272 
0.0141 
1.5494 
0.0079 
1.5583 
0.0051 
1.5628 
0.0035 
1.5653 
0.0026 
1.5667 
0.0020 
1.5672 
0.0016 
1.5670 
0.0013 
1.5665 
0.0003 
1.5525 
0.0001 
1.5098 
0.0000 

1.0326 
0.0000 
0.7887 
0.6815 
0.3040 
1.2593 
0.1411 
1.4265 
0.0801 
1.4894 
0.0514 
1.5198 
0.0357 
1.5369 
0.0262 
1.5474 
0.0200 
1.5542 
0.0158 
1.5585 
0.0128 
1.5612 
0.0032 
1.5533 
0.0008 
1.5098 
0.0004 
1.4570 

Table 4. Values of the modulus and of the argument (in italic) of Bit,4 at s = 0 for a tungsten 
conductor with A = 0.4 and the region 0 < s < 0.4 occupied either by a Pyrex glass or by Teflon 

1- = 0.00890 ; &/Cl = 396.2 l- = 0.00159 ; Ad/R = 584.4 
(Pyrex glass) (Teflon) 

R Bi = 1O-3 Bi = lo-* Bi = 10-l Bi = lo-’ Bi = lo-* Bi = 10-l 

0.00 1.0003 
0.0000 

0.01 0.0104 
2.1325 

0.02 0.0014 
3.3401 

0.03 0.0003 
4.4953 

0.04 0.0001 
5.6318 

0.05 0.0000 

0.06 0.0000 

1.0033 
0.0000 
0.1030 
2.0311 
0.0140 
3.3131 
0.0025 
4.4830 
0.0005 
5.6249 
0.000 1 
0.4760 
0.0000 

1.0326 
0.0000 
0.6892 
1.3228 
0.1339 
3.0594 
0.0252 
4.3637 
0.0054 
5.5572 
0.0013 
0.4333 
0.0003 
1.5771 

1.0003 
0.0000 
0.0088 
2.7157 
0.0006 
4.4478 
0.0001 
6.1141 
0.0000 

0.0000 

0.0000 

1.0033 
0.0000 
0.0875 
2.6053 
0.0062 
4.4195 
0.0006 
6.1015 
0.0001 
I .4839 
0.0000 

0.0000 
- 

1.0326 
0.0000 
0.5620 
1.8577 
0.0593 
4.1516 
0.0065 
5.9785 
0.0008 
1.4150 
0.0001 
3.1005 
0.0000 

averaged dimensionless temperature, while the phase not prescribed but the effective electric current Z,, 
tends to zero. is known, then equation (41) can still be employed 

The temperature field can be easily evaluated from because Q is determined by Z, through the relation 
the dimensionless temperature values by employing 
equation (41) provided that Q is prescribed. If Q is Q = Rorp@ W:t-r (93) 
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Table 5 Values of the modulus and of the argument (in italic) of Si$ at s = 1 for a tungsten 
conductor with adiabatic conditions at s = A 

A = 0.4 A = 0.7 

R Bi = 1o-3 Bi = 1om2 Bi = 10-l Bi = 10-3 Bi = lo-* Bi = 10-l 

0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.20 

0.40 

0.60 

1 .oooo 
0.0000 
0.0129 
1.5578 
0.0032 
I .5672 
0.0014 
1.5685 
0.0008 
1.5686 
0.0005 
I .5682 
0.0004 
1.5675 
0.0003 
1.5666 
0.0002 
I .5656 
0.0002 
I .5644 
0.0001 
I.5631 
0.0000 

- 
0.0000 

- 
0.0000 

- 

1 .oooo 
0.0000 
0.1273 
1.4430 
0.0321 
1.5383 
0.0143 
I .5556 
0.0080 
1.5613 
0.0051 
I .5634 
0.0036 
1.5640 
0.0026 
I .5639 
0.0020 
I .5634 
0.0016 
I .5625 
0.0013 
1.5614 
0.0003 
1.5417 
0.0001 
1.4701 
0.0000 

- 

1 .oooo 
0.0000 
0.7838 
0.6699 
0.3009 
1.2645 
0.1389 
1.4300 
0.0786 
1.4895 
0.0504 
1.5164 
0.0351 
1.5302 
0.0258 
1.5377 
0.0197 
1.5419 
0.0156 
I .5440 
0.0127 
1.5450 
0.0032 
1.5337 
0.0008 
1.4663 
0.0002 
I.3124 

1 .oooo 
0.0000 
0.0212 
1.5494 
0.0053 
1.5645 
0.0024 
I .5664 
0.0013 
1.5661 
0.0008 
I .5650 
0.0006 
I .5634 
0.0004 
1.5615 
0.0003 
I .5593 
0.0003 
1.5569 
0.0002 
I .5543 
0.0001 
1.5190 
0.0000 

0.0000 

1 .oooo 
0.0000 
0.2070 
I .3620 
0.0528 
1.5170 
0.0235 
I .5453 
0.0132 
I .5542 
0.0085 
I .5574 
0.0059 
1.5581 
0.0043 
1.5576 
0.0033 
1.5563 
0.0026 
I .5545 
0.0021 
1.5523 
0.0005 
1.5182 
0.0001 
1.4182 
0.0000 

1 .oooo 
0.0000 
0.9026 
0.4447 
0.4643 
I .0869 
0.2269 
1.3398 
0.1300 
I .4370 
0.0836 
1.4819 
0.0582 
I .5054 
0.0428 
I .5186 
0.0328 
I .5262 
0.0259 
1.5304 
0.0210 
1.5325 
0.0052 
1.5107 
0.0013 
1.4143 
0.0003 
I.2134 

where R, = l/[nu(t!? - a’)] is the resistance of the elec- 
tric conductor per unit length and for a stationary 
current, while function cp is defined as 

I 
(1-A’) ~~f(~‘,~,A)~~~s’ds 

s 
cp(C&A)=- A 

2 
lli 

If@‘, Q A)s’ ds’ 
I 

* 
(94) 

A 

Equations (93) and (94) can be obtained by a method 
similar to that employed in [13] for a resistor in the 
form of a solid cylinder. 

CONCLUSIONS 

The power generated per unit volume by the Joule 
effect in an infinitely long and hollow cylindrical con- 
ductor crossed by an alternating current has been 
evaluated by taking into account the skin effect and 
assuming that the internal hole is filled with a dielectric 
solid. Then, the Fourier equation has been written in 
a dimensionless form both in the region occupied by 
the electric conductor and in that occupied by the 
dielectric. The dimensionless temperature field has 
been determined analytically in a steady periodic 

regime. Values of the time-average, amplitude and 
phase of the dimensionless temperature field have 
been reported in tables. The amplitude and the phase 
have been evaluated with reference to two kinds of 
dielectric : Pyrex glass and Teflon. Three distributions 
of the time-averaged and dimensionless temperature 
within the electric conductor have been plotted, with 
increasing values of the frequency. It has been pointed 
out that the time-averaged and dimensionless tem- 
perature tends to become uniformly distributed both 
in the conductor and in the dielectric when the electric 
current frequency tends to infinity. The amplitude and 
the phase of the dimensionless temperature oscil- 
lations have been evaluated when the ratio A between 
the internal and external radii of the hollow cylinder 
is 0.4. It has been shown that the amplitude of the 
dimensionless temperature oscillations decreases very 
rapidly to zero as the frequency increases, so that for 
a tungsten conductor with an external radius of 1 cm 
the amplitude is negligible for a frequency greater than 
33.3 Hz. Finally, the case in which the hole within 
the conductor is occupied by empty space has been 
considered. The numerical values of the amplitude 
and phase of the dimensionless temperature oscil- 
lations have been evaluated for A = 0.4 and A = 0.7. 
The results for A = 0.4 are similar to those obtained 
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Table 6. Values of the modulus and of the argument (in italic) of Bi$ at s = A for a tungsten 
conductor with adiabatic conditions at s = A 

A = 0.4 A = 0.7 

n Bi = lO-3 Bi = 1o-2 Bi = 10-l Bi = 10-j Bi = lo-* Bi = 10-l 

0.00 1.0003 1.0033 1.0326 1.0002 1.0016 1.0157 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.01 0.0129 0.1277 0.8093 0.0212 0.2073 0.9168 
1.5578 1.4431 0.6701 I .5494 1.3620 0.4447 

0.02 0.0032 0.0322 0.3107 0.0053 0.0529 0.4716 
1.5672 I .5384 1.2652 1.5645 1.5170 1.0870 

0.03 0.0014 0.0143 0.1434 0.0024 0.0235 0.2305 
1.5685 1.5558 1.4315 1.5664 1.5453 1.3400 

0.04 0.0008 0.0080 0.0812 0.0013 0.0132 0.1320 
I .5686 1.5615 1.4922 I .5661 1.5543 I.4373 

0.05 0.0005 0.0052 0.0520 0.0008 0.0085 0.0849 
1.5682 1.5638 1.5206 1.5650 1.5574 1.4825 

0.06 0.0004 0.0036 0.0362 0.0006 0.0059 0.0591 
1.5676 1.5647 1.5362 1.5634 I .5582 I .5062 

0.07 0.0003 0.0026 0.0266 0.0004 0.0043 0.0434 
I.5668 I .5648 1.5456 1.5615 1.5577 1.5197 

0.08 0.0002 0.0020 0.0203 0.0003 0.0033 0.0333 
1.5659 1.5646 1.5516 1.5593 1.5564 1.5276 

0.09 0.0002 0.0016 0.0160 0.0003 0.0026 0.0263 
I .5649 1.5641 I .5556 I .5569 I .5546 1.5322 

0.10 0.0001 0.0013 0.0130 0.0002 0.002 1 0.0213 
I .5639 I .5633 1.5581 1.5543 1.5525 I .5346 

0.20 0.0000 0.0003 0.0032 0.0001 0.0005 0.0053 
1.5507 1.5515 1.5199 1.5197 1.5176 

0.40 0.0000 0.0001 0.0008 0.0000 0.0001 0.0013 
I .5088 I .5088 1.4281 I .4284 

0.60 0.0000 0.0000 0.0004 0.0000 0.0001 0.0006 
- 1.4562 1.3333 1.3333 

in the case in which the hole within the conductor is 
filled with Teflon. 

6. 
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